
Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

Humanizing Peer Reviews1

Karl E. Wiegers
Process Impact

http://www.processimpact.com

Peer review—an activity in which people other than the author of a software deliverable
examine it for defects and improvement opportunities—is one of the most powerful software
quality tools available. Peer review methods include inspections, walkthroughs, peer deskchecks,
and other similar activities. After experiencing the benefits of peer reviews for nearly fifteen
years, I would never work in a team that did not perform them.

However, many organizations struggle to implement an effective review program. Many
of the barriers to successful peer reviews are social and cultural in nature, not technical. This
article explores some of the social and psychological aspects of having people review each
other’s work, ways to overcome resistance to reviews, and issues regarding management
involvement. The suggestions provided here might help your peer review program succeed
where others have failed.

Scratch Each Other’s Back

Asking your colleagues to point out errors in your work is a learned—not instinctive—
behavior. We all take pride in the work we do and the products we create. We don’t like to admit
that we make mistakes, we don’t realize how many we make, and we don’t like to ask other
people to find them. Holding successful peer reviews requires us to overcome this natural
resistance to outside critique of our work.

Busy practitioners are sometimes reluctant to spend time examining a colleague’s work.
They might be leery of a co-worker who asks for a review of his code. Questions arise: Does he
lack confidence? Does he want you to do his thinking for him? “Anyone who needs their code
reviewed shouldn’t be getting paid as a software developer,” scoff some potential review
resisters. These resisters don’t appreciate the value that multiple pairs of eyes can add.

In a healthy software engineering culture, team members engage their peers to improve
the quality of their work and increase their productivity. They understand that time spent looking
at a colleague’s deliverable isn’t time wasted, especially when other team members willingly
reciprocate. The best software engineers I have known actively sought out reviewers, having
learned early on how much they can help. Indeed, the input from many reviewers over their
careers was part of what made these developers the best at what they do.

Gerald Weinberg introduced the concept of “egoless programming” in The Psychology of
Computer Programming, originally published in 1971 and re-released in 1998. Weinberg
recognized that people tie much of their perceived self-worth to their work. You can interpret a
fault that someone finds in an item you created as a shortcoming in yourself as a software

1 This paper was originally published in STQE, March/April 2002. It is reprinted (with modifications) with
permission from Software Quality Engineering. It is adapted from Peer Reviews in Software: A Practical Guide by
Karl E. Wiegers (Addison-Wesley, 2002).

Humanizing Peer Reviews Page 2

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

developer, and perhaps even as a human being. To guard your ego, you don’t want to know
about all the errors you’ve made, and you might rationalize possible bugs as product features.
Such staunch ego-protection presents a barrier to effective peer review, leads to an attitude of
private ownership toward individual contributions within a team project, and can result in a poor
quality product. Egoless programming enables an author to step back and let others point out
places where improvement is needed.

Note that the term is “egoless programming,” not “egoless programmer.” Developers
need a robust enough ego to trust and defend their work, but not so much ego that they reject
suggestions for better solutions. Similarly, the egoless reviewer should have compassion and
sensitivity for his colleagues, if only because their roles will be reversed one day.

A broad peer review program can only succeed in a work culture that values quality in its
many dimensions, including freedom from defects, satisfaction of customer needs and business
objectives, timeliness of delivery, and the possession of desirable product functionality and
attributes. Recognizing that team success depends on helping each other do the best job possible,
members of a healthy culture prefer to have peers—not customers—find defects. They
understand that reviews are not meant to identify scapegoats for quality problems. Having a co-
worker locate a defect is regarded as a “good catch,” not a personal failing. In fact, reviews can
motivate authors to practice superior craftsmanship because they know their colleagues will
closely examine their work.

Tips for the Reviewer

The dynamics between the reviewers and the work product’s author are a critical aspect
of peer reviews. The author must trust and respect the reviewers to be receptive to their
comments. Conversely, the reviewers must respect the author’s talent and hard work. The ways
in which reviewers speak to authors indicate whether their culture favors respectful collaboration
or competitive antagonism.

Reviewers should focus on what they observed about the product, thoughtfully selecting
the words they use to raise an issue. Saying, “I didn’t see where these variables were initialized”
is likely to elicit a constructive response; the more accusatory “You didn’t initialize these
variables” might get the author’s hackles up. You might phrase your comments in the form of a
question: “Are we sure that another component doesn’t already provide that service?” Or,
identify a point of confusion: “I didn’t see where this memory block is deallocated.” Direct your
comments to the work product, not to the author. For example, say “This specification is missing
Section 3.5 from the template” instead of “You left out section 3.5.” Reviewers and authors must
work together outside the reviews, so each needs to maintain a level of professionalism and
mutual respect to avoid strained relationships.

While a draft of my book Peer Reviews in Software was undergoing peer review
(naturally!), one reviewer expressed a concern by writing, “How in the world have you managed
to” miss some point he thought was important. Then he added, “Good grief, Karl.” I respect this
reviewer’s experience and value his insights, but perhaps he could have phrased that bit of
feedback more tactfully. Expressing incredulity at the author’s lack of understanding is not likely
to make the author receptive to a reviewer’s suggestion. While a reviewer might let an
inappropriate comment slip out accidentally during a discussion, it’s inexcusable in written
feedback.

You do not want your reviews to create authors who look forward to retaliating against
their tormentors. Moreover, an author who walks out of a review meeting feeling personally

Humanizing Peer Reviews Page 3

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

attacked or professionally insulted will not voluntarily submit his work for review again. Bugs
are the bad guys in a review, not the author or the reviewers. The leaders of the review initiative
should strive to create a culture of constructive criticism, in which team members seek to learn
from their peers and do a better job the next time. Managers should encourage and reward those
who initially participate in reviews and make useful contributions, regardless of the review
outcomes.

Problem: Why Don’t People Do Reviews?

Lack of knowledge about reviews, cultural issues, and simple resistance to change (which
often masquerades as excuses) contribute to the underuse of reviews. Many people don’t
understand what peer reviews are, why they are valuable, the differences between formal and
informal reviews, or when and how to perform them. Some developers and project managers
don’t think their project is large enough or critical enough to need reviews, yet any piece of work
can benefit from an outside perspective. There’s also a widely held perception that reviews take
too much time and slow the project down. In reality, any technique that facilitates early quality
improvements should shorten schedules, reduce maintenance costs, and enhance customer
satisfaction. The misperception that testing is always superior to manual inspection also leads
some practitioners to shun reviews.

Several cultural issues can create unpleasant review experiences. The fear of management
retribution if defects are discovered can make an author reluctant to let others examine his work.
Another cultural barrier is the reviewer’s attitude that the author is the most qualified person to
work on his part of the system—who am I to look for errors in his work? This is a common
reaction from new developers who are invited to review an experienced colleague’s deliverables.
There is also the paradox that many developers are reluctant to try a new method unless the
technique has been proven to work, yet the developers don’t believe the new approach works
until they’ve successfully done it themselves. They don’t want to take anyone else’s word for it.

Cultural biases that run deeper than workplace attitudes can play against review
participation. For instance, our educational system grades people primarily on individual
performance, so collaborating is sometimes viewed as cheating. There’s an implication that if
you need help, then you must not be very smart. Therefore, it’s not surprising that developers
often resist asking for help through reviews. We have to overcome the ingrained culture of
individual achievement and embrace the value of collaboration. In addition, authors who submit
their work for scrutiny might feel their privacy is being invaded, being forced to air the internals
of their work for all to see. This is threatening to some people, which is why the culture must
emphasize the value of reviews as a collaborative, nonjudgmental tool for improved quality and
productivity.

Then there are the excuses. People who don’t want to do reviews will expend
considerable energy explaining why reviews don’t fit their culture, needs, or time constraints.
Resistance often appears as NAH (Not Applicable Here) Syndrome: we don’t need no stinkin’
reviews. There is the attitude that some people’s work does not need reviewing. Some team
members can’t be bothered to look at a colleague’s work. “I’m too busy fixing my own bugs to
waste time finding someone else’s. Aren’t we all supposed to be doing our own work correctly?”
Other developers imagine that their software prowess has moved them past the point of peer
reviews. “Inspections have been around for 25 years; they’re obsolete. Our high-tech group only
uses leading-edge technologies.” These excuses could reflect the team’s cultural attitudes toward
quality, indicate resistance to change, or reveal a fear of peer reviews. You must address these
existing barriers to establish a successful review program.

Humanizing Peer Reviews Page 4

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

Strategy: Overcoming Resistance to Reviews

Lack of knowledge is easy to correct if people are willing to learn. A one-day class that
includes a practice review session gives team members a common understanding about the
process. Managers who also attend the class send a powerful signal about their commitment to
reviews. Management attendance says to the team, “This is important enough for me to spend
time on it, so it should be important to you, too” and “I want to understand reviews so I can help
make this effort succeed.”

Dealing with cultural issues requires that you understand your team’s culture and how
best to steer the team members toward improved software engineering practices. What values do
they hold in common? Is there a shared understanding of, and commitment to, quality? What
previous change initiatives have succeeded and why? Which have struggled and why? Who are
the opinion leaders in the group and what are their attitudes toward reviews?

Larry Constantine described four cultural paradigms found in software organizations:
closed, open, synchronous, and random (see “Work Organization: Paradigms for Project
Management and Organization,” Comm. ACM, October 1993). Understanding which paradigm
your team’s culture most closely resembles can give you some clues about how to introduce a
peer review program.

A closed culture has a traditional hierarchy of authority. You can introduce peer reviews
in a closed culture through a management-driven process improvement program, perhaps based
on one of the Software Engineering Institute’s capability maturity models.

Innovation, collaboration, and consensus decision-making characterize an open culture.
Members of an open culture want to debate the merits of peer reviews and participate in deciding
when and how to implement them. Respected leaders who have had positive results with reviews
in the past can influence the group’s willingness to adopt them. Such cultures might favor review
meetings in which discussion of proposed solutions is common, although the inspection process
emphasizes finding—not fixing—defects during meetings.

Members of a synchronous group are well aligned and comfortable with the status quo.
Because they recognize the value of coordinating their efforts, they are probably already
performing at least informal reviews. A comfort level with informal reviews makes it easier to
implement a more formal inspection program.

Entrepreneurial, fast-growing, and leading-edge technology companies often develop a
random culture populated by autonomous individuals. In random organizations, individuals who
have performed peer reviews in the past might continue to hold them. The other team members
probably don’t have the patience for reviews, but they might change their minds if quality
problems from the resulting chaos burn them badly enough.

Whichever category best describes your work culture, people will want to know what
benefits any new process will provide to them personally. Table 1 lists some of the benefits that
various project team members might reap from reviewing major life cycle deliverables. Not only
will the team benefit, but the customers come out ahead as well. They’ll receive a timely product
that is more robust and reliable, better meets their needs, and increases their own productivity.

Humanizing Peer Reviews Page 5

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

Table 1. Benefits from peer reviews for different project roles.

Project Role Possible Benefits from Peer Reviews

Developer • Less time spent performing rework
• Increased programming productivity
• Better techniques learned from other developers
• Reduced unit testing and debugging time
• Less debugging during integration and system testing
• Exchanging of information about components and overall

system with other team members
Project Manager • Shortened product development cycle time

• Increased chance of shipping the product on schedule
• Reduced field service and customer support costs
• Reduced lifetime maintenance costs, freeing resources for new

development projects
• Improved teamwork, collaboration, and development

effectiveness
• Reduced impact from staff turnover through cross-training of

team members
• Better and earlier insight into project risks and quality issues

Maintainer • Fewer production support demands, leading to a reduced
maintenance backlog

• More robust designs that tolerate change
• Conformance of work products to team standards
• Better structured and documented work products that are easy

to understand and modify
• Better understanding of the product from having participated

in design and code reviews during development
Quality Assurance
Manager

• Ability to judge testability of product features under
development

• Shortened system-testing cycles and less retesting
• Ability to use review data when making release decisions
• Education of quality engineers about the product
• Ability to anticipate quality assurance effort needed

Requirements Analyst • Earlier correction of missing or erroneous requirements
• Fewer infeasible and untestable requirements because of

developer and test engineer input during reviews
Test Engineer • Ability to focus on finding subtle defects because product is of

higher initial quality
• Fewer defects that block continued testing
• Improved test design and test cases that smooth out the testing

process

Humanizing Peer Reviews Page 6

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

Although there are many individual rewards from conducting peer reviews, also address
the larger question of “What’s in it for us?” Sometimes when you’re asked to change the way
you work, your immediate personal reward is small, although the team as a whole might benefit
in a big way. I might not get three hours of benefit from spending three hours reviewing someone
else’s code. However, the other developer might avoid ten hours of debugging effort later in the
project and we might ship the product sooner than we would have otherwise.

Influential resisters who come to appreciate the value of reviews might persuade other
team members to try them, too. A quality manager once encountered a developer named Judy
who was opposed to “time-sapping” inspections. After participating under protest, Judy quickly
saw the power of the technique and became the group’s leading convert. Since Judy had some
influence with her peers, she helped turn developer resistance toward inspections into
acceptance. Judy’s project team ultimately asked the quality manager to help them hold even
more inspections. Engaging developers in an effective inspection program helped motivate them
to try some other software quality practices, too.

Management Involvement

The attitudes and behaviors that managers exhibit affect how well reviews will work in
an organization. While managers want to deliver quality products, they also feel pressure to
release products quickly. Managers need to learn about peer reviews and their benefits so they
can build the reviews into project plans, allocate resources, and communicate their commitment
to reviews to the team.

Watch out for culture killers, such as singling out certain developers for the humiliating
“punishment” of having their work reviewed. For example, my colleague Phil once told me that
his manager demanded code reviews whenever a project was in trouble, with the unstated
objective of finding a scapegoat. Unfortunately, Phil was the first to fall victim to such a review.
The review team found only minor issues, but the manager then went around complaining that
the project was late because Phil’s code was full of bugs! Understandably, Phil soon quit this job.

On a similar note, I recently heard from a quality manager at a company that had
operated a successful inspection program for two years. Then the development manager
announced that finding more than five bugs during an inspection would count against the author
at performance evaluation time. Naturally, this made the development team members very
nervous. It conveyed the erroneous impression that the point of the inspection was to punish
people for making mistakes. Such evaluation criminalizes the mistakes that we all make and pits
team members against each other. This misapplication of inspection data could lead to numerous
dysfunctional outcomes:

1. Developers might not submit their work for inspection to avoid being punished for their
results. They might refuse to inspect a peer’s work to avoid contributing to someone
else’s punishment.

2. Inspectors might not point out defects during the inspection, instead reporting them to the
author offline so they aren’t tallied against the author. This undermines the open focus on
quality that should characterize peer review.

3. Inspection teams might endlessly debate whether something really is a defect, because
defects count against the author while issues or simple questions do not.

Humanizing Peer Reviews Page 7

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

4. The team’s inspection culture will develop an unstated goal of finding few defects, rather
than revealing as many as possible.

5. Authors might inspect very small pieces of work so they don’t find more than five bugs
in any one inspection. This leads to inefficient and time-wasting inspections.

When presented with these risks, reasonable managers will rethink their intention to
misuse the review data. If an unreasonable manager insists on using the data in this way, the
team won’t be successful with reviews. Managers may legitimately expect developers to submit
their work for review and to review deliverables that others create. However, managers must not
evaluate individuals based on the number of defects found during those reviews.

Without visible and sustained commitment to peer reviews from management, only those
practitioners who believe reviews are important will perform them. Management commitment
goes far beyond providing verbal support or giving team members permission to hold reviews.
Figure 1 lists several clear signs of management commitment to peer reviews. If too many of
these indicators are missing in your organization, your review program will likely struggle.

Figure 1. Ten Signs of Management Commitment to Peer Reviews.

1. Providing the resources and time to develop, implement, and sustain an effective
review process.

2. Setting policies, expectations, and goals about review practice.

3. Ensuring that project schedules include the time needed to perform reviews.

4. Making training available to the participants and attending the training themselves.

5. Never using review results to evaluate the performance of individuals.

6. Holding people accountable for participating in reviews and for contributing
constructively to them.

7. Publicly rewarding the early adopters of reviews to reinforce desired behaviors.

8. Running interference with other managers and customers who challenge the need for
reviews.

9. Respecting the judgment of an inspection team’s appraisal of a document’s quality.

10. Asking for status reports on how the program is working, what it costs, and the
team’s benefits from reviews.

Humanizing Peer Reviews Page 8

Copyright © 2002 by Karl E. Wiegers. All Rights Reserved.

Review Your Way to Success

If you’re serious about the quality of your work, you’ll accept that you make mistakes,
seek the counsel of your compatriots in finding them, and willingly review your colleagues’
work products. You will set aside your ego so you can benefit from the experience and
perspective of your technical associates. When you have internalized the benefits of peer
reviews, you won’t feel comfortable unless someone else carefully examines any significant
deliverable you create.

On the other hand, even if you care about quality, you’ll be reluctant to participate in
reviews if your environment is not supportive of such quality practices. Perhaps you can lead by
example, inviting other team members to look at your deliverables. Maybe you can contribute to
leading a nascent review program and help steer managers and practitioners to the effective and
routine application of reviews. But if holding reviews would be too unpleasant in a hostile
environment, you might want to find a culture that better supports your personal quality
philosophy.

[SIDEBAR] Reviews without Borders

Increasingly, software projects involve teams that collaborate across multiple
corporations, time zones, continents, organizational and national cultures, and native languages.
The review issues include both communication logistics and cultural factors; the latter pose the
greater challenge. Different cultures have different attitudes toward critiquing work performed
by another team member or by a supervisor. People from certain nations or geographical regions
are comfortable with a more aggressive interaction style than are others, who avoid
confrontation. A review participant from the more reserved community might feel that someone
from the assertive domain is dominating the review, while an assertive participant wonders why
his quiet counterpart isn’t contributing to the discussion. If you face such a multicultural
challenge, learn about ways to get members of different cultures to collaborate and adjust your
expectations about peer reviews.

One company encountered cultural barriers on a project that involved collaborating
development teams in Singapore and the Netherlands (see Erik P.W.M. Van Veenendaal’s
“Practical Quality Assurance for Embedded Software,” Software Quality Professional, June
1999). Developers in Singapore were not accustomed to having others comment on their work.
They could take well-meaning comments personally, especially if they were presented semi-
publicly during an inspection meeting. To deal with this, the company matched a co-author from
the Netherlands with each work product from Singapore and held all inspections in the
Netherlands. This approach succeeded, but it sidestepped the underlying cultural issue and
essentially permitted the Singapore developers to avoid engagement in the inspections.

When you plan reviews for cross-cultural development projects, be aware of these
interaction differences and consider which review approaches will work best. Discuss these
sensitive issues with review participants to make everyone aware of how their differences will
affect the review process. If the participants are geographically separated, hold an initial face-to-
face training session to surface the cultural and communication factors so the team can determine
how best to function when the team members are separated.

