

Sample Chapters
Copyright © 2013 by Karl Wiegers and Seilevel

All rights reserved.

To learn more about this book visit:
http://aka.ms/SoftwareReq3E/details

http://aka.ms/SoftwareReq3E/details

 ix

Contents

Introduction .xxv

Acknowledgments . xxxi

PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO

Chapter 1 The essential software requirement 3
Software requirements defined . 5

Some interpretations of ”requirement” . 6

Levels and types of requirements . 7

Working with the three levels .12

Product vs. project requirements .14

Requirements development and management .15

Requirements development .15

Requirements management . 17

Every project has requirements .18

When bad requirements happen to good people .19

Insufficient user involvement .20

Inaccurate planning .20

Creeping user requirements .20

Ambiguous requirements .21

Gold plating .21

Overlooked stakeholders .22

Benefits from a high-quality requirements process22

Chapter 2 Requirements from the customer’s perspective 25
The expectation gap .26

Who is the customer? .27

The customer-development partnership .29

Requirements Bill of Rights for Software Customers 31

Requirements Bill of Responsibilities for Software Customers33

x Contents

Creating a culture that respects requirements .36

Identifying decision makers .38

Reaching agreement on requirements .38

The requirements baseline .39

What if you don’t reach agreement? .40

Agreeing on requirements on agile projects 41

Chapter 3 Good practices for requirements engineering 43
A requirements development process framework .45

Good practices: Requirements elicitation .48

Good practices: Requirements analysis .50

Good practices: Requirements specification . 51

Good practices: Requirements validation .52

Good practices: Requirements management .53

Good practices: Knowledge .54

Good practices: Project management .56

Getting started with new practices .57

Chapter 4 The business analyst 61
The business analyst role .62

The business analyst’s tasks .63

Essential analyst skills .65

Essential analyst knowledge .68

The making of a business analyst .68

The former user .68

The former developer or tester .69

The former (or concurrent) project manager70

The subject matter expert .70

The rookie .71

The analyst role on agile projects .71

Creating a collaborative team .72

 Contents xi

PART II REQUIREMENTS DEVELOPMENT

Chapter 5 Establishing the business requirements 77
Defining business requirements .78

Identifying desired business benefits .78

Product vision and project scope .78

Conflicting business requirements .80

Vision and scope document .81

1. Business requirements .83

2. Scope and limitations .88

3. Business context .90

Scope representation techniques .92

Context diagram .92

Ecosystem map .94

Feature tree .95

Event list .96

Keeping the scope in focus .97

Using business objectives to make scoping decisions97

Assessing the impact of scope changes .98

Vision and scope on agile projects .98

Using business objectives to determine completion99

Chapter 6 Finding the voice of the user 101
User classes .102

Classifying users .102

Identifying your user classes .105

User personas .107

Connecting with user representatives .108

The product champion .109

External product champions .110

Product champion expectations .111

Multiple product champions .112

xii Contents

Selling the product champion idea .113

Product champion traps to avoid .114

User representation on agile projects .115

Resolving conflicting requirements .116

Chapter 7 Requirements elicitation 119
Requirements elicitation techniques .121

Interviews .121

Workshops .122

Focus groups .124

Observations .125

Questionnaires .127

System interface analysis .127

User interface analysis .128

Document analysis .128

Planning elicitation on your project .129

Preparing for elicitation .130

Performing elicitation activities .132

Following up after elicitation .134

Organizing and sharing the notes .134

Documenting open issues .135

Classifying customer input .135

How do you know when you’re done? .138

Some cautions about elicitation .139

Assumed and implied requirements .140

Finding missing requirements .141

Chapter 8 Understanding user requirements 143
Use cases and user stories .144

The use case approach .147

Use cases and usage scenarios .149

Identifying use cases .157

 Contents xiii

Exploring use cases .158

Validating use cases .160

Use cases and functional requirements .161

Use case traps to avoid .163

Benefits of usage-centric requirements .164

Chapter 9 Playing by the rules 167
A business rules taxonomy .169

Facts .170

Constraints. .170

Action enablers .171

Inferences .173

Computations .173

Atomic business rules . 174

Documenting business rules .175

Discovering business rules .177

Business rules and requirements .178

Tying everything together .180

Chapter 10 Documenting the requirements 181
The software requirements specification .183

Labeling requirements .186

Dealing with incompleteness .188

User interfaces and the SRS .189

A software requirements specification template .190

1. Introduction .192

2. Overall description .193

3. System features .194

4. Data requirements .195

5. External interface requirements .196

6. Quality attributes .197

7. Internationalization and localization requirements198

8. [Other requirements] .199

xiv Contents

Appendix A: Glossary .199

Appendix B: Analysis models .199

Requirements specification on agile projects .199

Chapter 11 Writing excellent requirements 203
Characteristics of excellent requirements .203

Characteristics of requirement statements .204

Characteristics of requirements collections .205

Guidelines for writing requirements .207

System or user perspective .207

Writing style .208

Level of detail .211

Representation techniques .212

Avoiding ambiguity .213

Avoiding incompleteness .216

Sample requirements, before and after .217

Chapter 12 A picture is worth 1024 words 221
Modeling the requirements .222

From voice of the customer to analysis models .223

Selecting the right representations .225

Data flow diagram .226

Swimlane diagram .230

State-transition diagram and state table .232

Dialog map .235

Decision tables and decision trees .239

Event-response tables .240

A few words about UML diagrams .243

Modeling on agile projects .243

A final reminder .244

 Contents xv

Chapter 13 Specifying data requirements 245
Modeling data relationships .245

The data dictionary .248

Data analysis .251

Specifying reports .252

Eliciting reporting requirements .253

Report specification considerations .254

A report specification template .255

Dashboard reporting .257

Chapter 14 Beyond functionality 261
Software quality attributes .262

Exploring quality attributes .263

Defining quality requirements .267

External quality attributes .267

Internal quality attributes .281

Specifying quality requirements with Planguage .287

Quality attribute trade-offs .288

Implementing quality attribute requirements .290

Constraints .291

Handling quality attributes on agile projects .293

Chapter 15 Risk reduction through prototyping 295
Prototyping: What and why .296

Mock-ups and proofs of concept .297

Throwaway and evolutionary prototypes .298

Paper and electronic prototypes .301

Working with prototypes. .303

Prototype evaluation .306

xvi Contents

Risks of prototyping .307

Pressure to release the prototype .308

Distraction by details .308

Unrealistic performance expectations .309

Investing excessive effort in prototypes .309

Prototyping success factors .310

Chapter 16 First things first: Setting requirement priorities 313
Why prioritize requirements? .314

Some prioritization pragmatics .315

Games people play with priorities .316

Some prioritization techniques .317

In or out .318

Pairwise comparison and rank ordering .318

Three-level scale .319

MoSCoW .320

$100 .321

Prioritization based on value, cost, and risk .322

Chapter 17 Validating the requirements 329
Validation and verification .331

Reviewing requirements .332

The inspection process .333

Defect checklist .338

Requirements review tips .339

Requirements review challenges .340

Prototyping requirements .342

Testing the requirements .342

Validating requirements with acceptance criteria .347

Acceptance criteria .347

Acceptance tests .348

 Contents xvii

Chapter 18 Requirements reuse 351
Why reuse requirements? .352

Dimensions of requirements reuse .352

Extent of reuse .353

Extent of modification .354

Reuse mechanism .354

Types of requirements information to reuse .355

Common reuse scenarios .356

Software product lines .356

Reengineered and replacement systems .357

Other likely reuse opportunities .357

Requirement patterns .358

Tools to facilitate reuse .359

Making requirements reusable .360

Requirements reuse barriers and success factors .362

Reuse barriers .362

Reuse success factors .363

Chapter 19 Beyond requirements development 365
Estimating requirements effort .366

From requirements to project plans .369

Estimating project size and effort from requirements 370

Requirements and scheduling .372

From requirements to designs and code .373

Architecture and allocation .373

Software design .374

User interface design .375

From requirements to tests .377

From requirements to success .379

xviii Contents

PART III REQUIREMENTS FOR SPECIFIC PROJECT CLASSES

Chapter 20 Agile projects 383
Limitations of the waterfall .384

The agile development approach .385

Essential aspects of an agile approach to requirements385

Customer involvement .386

Documentation detail .386

The backlog and prioritization .387

Timing .387

Epics, user stories, and features, oh my! .388

Expect change .389

Adapting requirements practices to agile projects390

Transitioning to agile: Now what? .390

Chapter 21 Enhancement and replacement projects 393
Expected challenges .394

Requirements techniques when there is an existing system394

Prioritizing by using business objectives .396

Mind the gap .396

Maintaining performance levels .397

When old requirements don’t exist .398

Which requirements should you specify? .398

How to discover the requirements of an existing system400

Encouraging new system adoption .401

Can we iterate? .402

Chapter 22 Packaged solution projects 405
Requirements for selecting packaged solutions .406

Developing user requirements .406

Considering business rules .407

Identifying data needs .407

 Contents xix

Defining quality requirements .408

Evaluating solutions .408

Requirements for implementing packaged solutions 411

Configuration requirements .411

Integration requirements .412

Extension requirements .412

Data requirements .412

Business process changes .413

Common challenges with packaged solutions .413

Chapter 23 Outsourced projects 415
Appropriate levels of requirements detail .416

Acquirer-supplier interactions .418

Change management .419

Acceptance criteria .420

Chapter 24 Business process automation projects 421
Modeling business processes .422

Using current processes to derive requirements423

Designing future processes first .424

Modeling business performance metrics .424

Good practices for business process automation projects426

Chapter 25 Business analytics projects 427
Overview of business analytics projects .427

Requirements development for business analytics projects429

Prioritizing work by using decisions .430

Defining how information will be used .431

Specifying data needs .432

Defining analyses that transform the data .435

The evolutionary nature of analytics .436

xx Contents

Chapter 26 Embedded and other real-time systems projects 439
System requirements, architecture, and allocation440

Modeling real-time systems .441

Context diagram .442

State-transition diagram .442

Event-response table .443

Architecture diagram .445

Prototyping .446

Interfaces .446

Timing requirements .447

Quality attributes for embedded systems .449

The challenges of embedded systems .453

PART IV REQUIREMENTS MANAGEMENT

Chapter 27 Requirements management practices 457
Requirements management process .458

The requirements baseline .459

Requirements version control .460

Requirement attributes .462

Tracking requirements status .464

Resolving requirements issues .466

Measuring requirements effort .467

Managing requirements on agile projects .468

Why manage requirements? .470

Chapter 28 Change happens 471
Why manage changes? .471

Managing scope creep .472

Change control policy .474

Basic concepts of the change control process . 474

 Contents xxi

A change control process description .475

1. Purpose and scope .476

2. Roles and responsibilities .476

3. Change request status .477

4. Entry criteria .478

5. Tasks .478

6. Exit criteria .479

7. Change control status reporting .479

Appendix: Attributes stored for each request479

The change control board .480

CCB composition .480

CCB charter .481

Renegotiating commitments .482

Change control tools .482

Measuring change activity .483

Change impact analysis .484

Impact analysis procedure .484

Impact analysis template .488

Change management on agile projects .488

Chapter 29 Links in the requirements chain 491
Tracing requirements .491

Motivations for tracing requirements .494

The requirements traceability matrix .495

Tools for requirements tracing .498

A requirements tracing procedure. .499

Is requirements tracing feasible? Is it necessary? .501

Chapter 30 Tools for requirements engineering 503
Requirements development tools .505

Elicitation tools .505

Prototyping tools .505

Modeling tools .506

xxii Contents

Requirements management tools .506

Benefits of using an RM tool .506

RM tool capabilities .508

Selecting and implementing a requirements tool 510

Selecting a tool .511

Setting up the tool and processes .511

Facilitating user adoption .513

PART V IMPLEMENTING REQUIREMENTS ENGINEERING

Chapter 31 Improving your requirements processes 517
How requirements relate to other project processes518

Requirements and various stakeholder groups .520

Gaining commitment to change .521

Fundamentals of software process improvement .522

Root cause analysis .524

The process improvement cycle .526

Assess current practices .526

Plan improvement actions .527

Create, pilot, and roll out processes .528

Evaluate results .529

Requirements engineering process assets .530

Requirements development process assets .531

Requirements management process assets 532

Are we there yet? .533

Creating a requirements process improvement road map535

Chapter 32 Software requirements and risk management 537
Fundamentals of software risk management .538

Elements of risk management .538

Documenting project risks .539

Planning for risk management .542

 Contents xxiii

Requirements-related risks .542

Requirements elicitation .543

Requirements analysis . 544

Requirements specification .545

Requirements validation .545

Requirements management .546

Risk management is your friend .546

Epilogue 549

Appendix A 551

Appendix B 559

Appendix C 575

Glossary 597

References 605

Index 619

 101

C H A P T E R 6

Finding the voice of the user

Jeremy walked into the office of Ruth Gilbert, the director of the Drug Discovery Division at Contoso
Pharmaceuticals. Ruth had asked the information technology team that supported Contoso’s research
organization to build a new application to help the research chemists accelerate their exploration for
new drugs. Jeremy was assigned as the business analyst for the project. After introducing himself and
discussing the project in broad terms, Jeremy said to Ruth, “I’d like to talk with some of your chemists to
understand their requirements for the system. Who might be some good people to start with?”

Ruth replied, “I did that same job for five years before I became the division director three years ago.
You don’t really need to talk to any of my people; I can tell you everything you need to know about this
project.”

Jeremy was concerned. Scientific knowledge and technologies change quickly, so he wasn’t sure if
Ruth could adequately represent the current and future needs for users of this complex application.
 Perhaps there were some internal politics going on that weren’t apparent and there was a good reason
for Ruth to create a buffer between Jeremy and the actual users. After some discussion, though, it
 became clear that Ruth didn’t want any of her people involved directly with the project.

“Okay,” Jeremy agreed reluctantly. “Maybe I can start by doing some document analysis and bring
questions I have to you. Can we set up a series of interviews for the next couple of weeks so I can
 understand the kinds of things you expect your scientists to be able to do with this new system?”

“Sorry, I’m swamped right now,” Ruth told him. “I can give you a couple of hours in about three
weeks to clarify things you’re unsure about. Just go ahead and start writing the requirements. When we
meet, then you can ask me any questions you still have. I hope that will let you get the ball rolling on
this project.”

If you share our conviction that customer involvement is a critical factor in delivering excellent
 software, you will ensure that the business analyst (BA) and project manager for your project will
work hard to engage appropriate customer representatives from the outset. Success in software
 requirements, and hence in software development, depends on getting the voice of the user close to
the ear of the developer. To find the voice of the user, take the following steps:

■■ Identify the different classes of users for your product.

■■ Select and work with individuals who represent each user class and other stakeholder groups.

■■ Agree on who the requirements decision makers are for your project.

102 PART II Requirements development

Customer involvement is the best way to avoid the expectation gap described in Chapter 2,
 “Requirements from the customer’s perspective,” a mismatch between the product that customers
expect to receive and what developers build. It’s not enough simply to ask a few customers or their
manager what they want once or twice and then start coding. If developers build exactly what
 customers initially request, they’ll probably have to build it again because customers often don’t
know what they really need. In addition, the BAs might not be talking to the right people or asking
the right questions.

The features that users present as their “wants” don’t necessarily equate to the functionality they
need to perform their tasks with the new product. To gain a more accurate view of user needs, the
business analyst must collect a wide range of user input, analyze and clarify it, and specify just what
needs to be built to let users do their jobs. The BA has the lead responsibility for recording the new
system’s necessary capabilities and properties and for communicating that information to other
stakeholders. This is an iterative process that takes time. If you don’t invest the time to achieve this
shared understanding—this common vision of the intended product—the certain outcomes are
rework, missed deadlines, cost overruns, and customer dissatisfaction.

User classes

People often talk about “the user” for a software system as though all users belong to a monolithic
group with similar characteristics and needs. In reality, most products of any size appeal to a diversity
of users with different expectations and goals. Rather than thinking of “the user” in singular, spend
some time identifying the multiple user classes and their roles and privileges for your product.

Classifying users
Chapter 2 described many of the types of stakeholders that a project might have. As shown in
Figure 6-1, a user class is a subset of the product’s users, which is a subset of the product’s customers,
which is a subset of its stakeholders. An individual can belong to multiple user classes. For example,
an application’s administrator might also interact with it as an ordinary user at times. A product’s
users might differ—among other ways—in the following respects, and you can group users into a
number of distinct user classes based on these sorts of differences:

■■ Their access privilege or security levels (such as ordinary user, guest user, administrator)

■■ The tasks they perform during their business operations

■■ The features they use

■■ The frequency with which they use the product

■■ Their application domain experience and computer systems expertise

■■ The platforms they will be using (desktop PCs, laptop PCs, tablets, smartphones, specialized
devices)

 CHAPTER 6 Finding the voice of the user 103

■■ Their native language

■■ Whether they will interact with the system directly or indirectly

FIGURE 6-1 A hierarchy of stakeholders, customers, users, and user classes.

It’s tempting to group users into classes based on their geographical location or the kind of
 company they work in. One company that creates software used in the banking industry initially
considered distinguishing users based on whether they worked in a large commercial bank, a small
commercial bank, a savings and loan institution, or a credit union. These distinctions really represent
different market segments, though, not different user classes.

A better way to identify user classes is to think about the tasks that various users will perform with
the system. All of those types of financial institutions will have tellers, employees who process loan
applications, business bankers, and so forth. The individuals who perform such activities—whether
they are job titles or simply roles—will have similar functional needs for the system across all of the
financial institutions. Tellers all have to do more or less the same things, business bankers do more or
less the same things, and so on. More logical user class names for a banking system therefore might
include teller, loan officer, business banker, and branch manager. You might discover additional user
classes by thinking of possible use cases, user stories, and process flows and who might perform them.

Certain user classes could be more important than others for a specific project. Favored user
classes are those whose satisfaction is most closely aligned with achieving the project’s business
 objectives. When resolving conflicts between requirements from different user classes or making
priority decisions, favored user classes receive preferential treatment. This doesn’t mean that the
customers who are paying for the system (who might not be users at all) or those who have the most
political clout should necessarily be favored. It’s a matter of alignment with the business objectives.

Disfavored user classes are groups who aren’t supposed to use the product for legal, security,
or safety reasons (Gause and Lawrence 1999). You might build in features to deliberately make it
hard for disfavored users to do things they aren’t supposed to do. Examples include access security

104 PART II Requirements development

 mechanisms, user privilege levels, antimalware features (for non-human users), and usage logging.
Locking a user’s account after four unsuccessful login attempts protects against access by the
 disfavored user class of “user impersonators,” albeit at the risk of inconveniencing forgetful legitimate
users. If my bank doesn’t recognize the computer I’m using, it sends me an email message with a
 one-time access code I have to enter before I can log on. This feature was implemented because of
the disfavored user class of “people who might have stolen my banking information.”

You might elect to ignore still other user classes. Yes, they will use the product, but you don’t
specifically build it to suit them. If there are any other groups of users that are neither favored,
 disfavored, nor ignored, they are of equal importance in defining the product’s requirements.

Each user class will have its own set of requirements for the tasks that members of the class must
perform. There could be some overlap between the needs of different user classes. Tellers, business
bankers, and loan officers all might have to check a bank customer’s account balance, for instance.
Different user classes also could have different quality expectations, such as usability, that will drive
user interface design choices. New or occasional users are concerned with how easy the system is to
learn. Such users like menus, graphical user interfaces, uncluttered screen displays, wizards, and help
screens. As users gain experience with the system, they become more interested in efficiency. They
now value keyboard shortcuts, customization options, toolbars, and scripting facilities.

Trap Don’t overlook indirect user classes. They won’t use your application themselves,
instead accessing its data or services through other applications or through reports. Your
customer once removed is still your customer.

User classes need not be human beings. They could be software agents performing a service on
behalf of a human user, such as bots. Software agents can scan networks for information about goods
and services, assemble custom news feeds, process your incoming email, monitor physical systems
and networks for problems or intrusions, or perform data mining. Internet agents that probe websites
for vulnerabilities or to generate spam are a type of disfavored non-human user class. If you identify
these sorts of disfavored user classes, you might specify certain requirements not to meet their needs
but rather to thwart them. For instance, website tools such as CAPTCHA that validate whether a user is
a human being attempt to block such disruptive access by “users” you want to keep out.

Remember, users are a subset of customers, which are a subset of stakeholders. You’ll need to
consider a much broader range of potential sources of requirements than just direct and indirect user
classes. For instance, even though the development team members aren’t end users of the system
they’re building, you need their input on internal quality attributes such as efficiency, modifiability,
portability, and reusability, as described in Chapter 14, “Beyond functionality.” One company
found that every installation of their product was an expensive nightmare until they introduced an
 “installer” user class so they could focus on requirements such as the development of a customization
 architecture for their product. Look well beyond the obvious end users when you’re trying to identify
stakeholders whose requirements input is necessary.

 CHAPTER 6 Finding the voice of the user 105

Identifying your user classes
Identify and characterize the different user classes for your product early in the project so you can
elicit requirements from representatives of each important class. A useful technique for this is a
collaboration pattern developed by Ellen Gottesdiener called “expand then contract” (Gottesdiener
2002). Start by asking the project sponsor who he expects to use the system. Then brainstorm as
many user classes as you can think of. Don’t get nervous if there are dozens at this stage; you’ll
 condense and categorize them later. It’s important not to overlook a user class, which can lead to
problems later when someone complains that the delivered solution doesn’t meet her needs. Next,
look for groups with similar needs that you can either combine or treat as a major user class with
several subclasses. Try to pare the list down to about 15 or fewer distinct user classes.

One company that developed a specialized product for about 65 corporate customers initially
 regarded each company as a distinct user with unique needs. Grouping their customers into just six
user classes greatly simplified their requirements challenges. Donald Gause and Gerald Weinberg
(1989) offer much advice about casting a wide net to identify potential users, pruning the user list,
and seeking specific users to participate in the project.

Various analysis models can help you identify user classes. The external entities shown outside your
system on a context diagram (see Chapter 5, “Establishing the business requirements”) are candidates
for user classes. A corporate organization chart can also help you discover potential users and other
stakeholders (Beatty and Chen 2012). Figure 6-2 illustrates a portion of the organization chart for
Contoso Pharmaceuticals. Nearly all of the potential users for the system are likely to be found
 somewhere in this chart. While performing stakeholder and user analysis, study the organization
chart to look for:

■■ Departments that participate in the business process.

■■ Departments that are affected by the business process.

■■ Departments or role names in which either direct or indirect users might be found.

■■ User classes that span multiple departments.

■■ Departments that might have an interface to external stakeholders outside the company.

Organization chart analysis reduces the likelihood that you will overlook an important class of
users within that organization. It shows you where to seek potential representatives for specific user
classes, as well as helping determine who the key requirements decision makers might be. You might
find multiple user classes with diverse needs within a single department. Conversely, recognizing
the same user class in multiple departments can simplify requirements elicitation. Studying the
 organization chart helps you judge how many user representatives you’ll need to work with to feel
confident that you thoroughly understand the broad user community’s needs. Also try to understand
what type of information the users from each department might supply based on their role in the
organization and their department’s perspective on the project.

106 PART II Requirements development

FIGURE 6-2 A portion of the organization chart for Contoso Pharmaceuticals.

Document the user classes and their characteristics, responsibilities, and physical locations in
the software requirements specification (SRS) or in a requirements plan for your project. Check that
 information against any information you might already have about stakeholder profiles in the vision
and scope document to avoid conflicts and duplication. Include all pertinent information you have
about each user class, such as its relative or absolute size and which classes are favored. This will
help the team prioritize change requests and conduct impact assessments later on. Estimates of
the volume and type of system transactions help the testers develop a usage profile for the system
so that they can plan their verification activities. The project manager and business analyst of the
 Chemical Tracking System discussed in earlier chapters identified the user classes and characteristics
shown in Table 6-1.

TABLE 6-1 User classes for the Chemical Tracking System

Name Number Description

Chemists
 (favored)

Approximately
1,000 located in
6 buildings

Chemists will request chemicals from vendors and from the chemical
 stockroom. Each chemist will use the system several times per day, mainly for
requesting chemicals and tracking chemical containers into and out of the
laboratory. The chemists need to search vendor catalogs for specific chemical
structures imported from the tools they use for drawing structures.

Buyers 5 Buyers in the purchasing department process chemical requests. They place
and track orders with external vendors. They know little about chemistry and
need simple query facilities to search vendor catalogs. Buyers will not use
the system’s container-tracking features. Each buyer will use the system an
 average of 25 times per day.

Chemical
 stockroom staff

6 technicians,
1 supervisor

The chemical stockroom staff manages an inventory of more than 500,000
chemical containers. They will supply containers from three stockrooms,
 request new chemicals from vendors, and track the movement of all
 containers into and out of the stockrooms. They are the only users of the
 inventory-reporting feature. Because of their high transaction volume,
 features that are used only by the chemical stockroom staff must be
 automated and efficient.

Health
and Safety
Department staff
(favored)

1 manager The Health and Safety Department staff will use the system only to generate
predefined quarterly reports that comply with federal and state chemical
usage and disposal reporting regulations. The Health and Safety Department
manager will request changes in the reports periodically as government
 regulations change. These report changes are of the highest priority, and
implementation will be time critical.

 CHAPTER 6 Finding the voice of the user 107

Consider building a catalog of user classes that recur across multiple applications. Defining user
classes at the enterprise level lets you reuse those user class descriptions in future projects. The next
system you build might serve the needs of some new user classes, but it probably will also be used
by user classes from your earlier systems. If you do include the user-class descriptions in the project’s
SRS, you can incorporate entries from the reusable user-class catalog by reference and just write
descriptions of any new groups that are specific to that application.

User personas

To help bring your user classes to life, consider creating a persona for each one, a description of a
representative member of the user class (Cooper 2004; Leffingwell 2011). A persona is a description
of a hypothetical, generic person who serves as a stand-in for a group of users having similar
 characteristics and needs. You can use personas to help you understand the requirements and to
design the user experience to best meet the needs of specific user communities.

A persona can serve as a placeholder when the BA doesn’t have an actual user representative
at hand. Rather than having progress come to a halt, the BA can envision a persona performing
a particular task or try to assess what the persona’s preferences would be, thereby drafting a
 requirements starting point to be confirmed when an actual user is available. Persona details for a
commercial customer include social and demographic characteristics and behaviors, preferences,
 annoyances, and similar information. Make sure the personas you create truly are representative of
their user class, based on market, demographic, and ethnographic research.

Here’s an example of a persona for one user class on the Chemical Tracking System:

Fred, 41, has been a chemist at Contoso Pharmaceuticals since he received his Ph.D.
14 years ago. He doesn’t have much patience with computers. Fred usually works
on two projects at a time in related chemical areas. His lab contains approximately
300 bottles of chemicals and gas cylinders. On an average day, he’ll need four new
chemicals from the stockroom. Two of these will be commercial chemicals in stock,
one will need to be ordered, and one will come from the supply of proprietary Contoso
chemical samples. On occasion, Fred will need a hazardous chemical that requires
special training for safe handling. When he buys a chemical for the first time, Fred
wants the material safety data sheet emailed to him automatically. Each year, Fred will
synthesize about 20 new proprietary chemicals to go into the stockroom. Fred wants
a report of his chemical usage for the previous month to be generated automatically
and sent to him by email so that he can monitor his chemical exposure.

As the business analyst explores the chemists’ requirements, he can think about Fred as the archetype
of this user class and ask himself, “What would Fred need to do?” Working with a persona makes the
requirements thought process more tangible than if you simply contemplate what a whole faceless
group of people might want. Some people choose a random human face of the appropriate gender
to make a persona seem even more real.

108 PART II Requirements development

Dean Leffingwell (2011) suggests that you design the system to make it easy for the individual
described in your persona to use the application. That is, you focus on meeting that one (imaginary)
person’s needs. Provided you’ve created a persona that accurately represents the user class, this
should help you do a good job of satisfying the needs and expectations of the whole class. As one
colleague related, “On a project for servicing coin-operated vending machines, I introduced Dolly the
Serviceperson and Ralph the Warehouse Supervisor. We wrote scenarios for them and they became
part of the project team—virtually.”

Connecting with user representatives

Every kind of project—corporate information systems, commercial applications, embedded systems,
websites, contracted software—needs suitable representatives to provide the voice of the user. These
users should be involved throughout the development life cycle, not just in an isolated requirements
phase at the beginning of the project. Each user class needs someone to speak for it.

It’s easiest to gain access to actual users when you’re developing applications for deployment
 within your own company. If you’re developing commercial software, you might engage people
from your beta-testing or early-release sites to provide requirements input much earlier in the
 development process. (See the “External product champions” section later in this chapter). Consider
setting up focus groups of current users of your products or your competitors’ products. Instead of
just guessing at what your users might want, ask some of them.

One company asked a focus group to perform certain tasks with various digital cameras and
 computers. The results indicated that the company’s camera software took too long to perform the
most common operation because of a design decision that was made to accommodate less likely
 scenarios as well. The company changed their next camera to reduce customer complaints about speed.

Be sure that the focus group represents the kinds of users whose needs should drive your product
development. Include both expert and less experienced customers. If your focus group represents
only early adopters or blue-sky thinkers, you might end up with many sophisticated and technically
difficult requirements that few customers find useful.

Figure 6-3 illustrates some typical communication pathways that connect the voice of the user
to the ear of the developer. One study indicated that employing more kinds of communication
links and more direct links between developers and users led to more successful projects (Keil and
Carmel 1995). The most direct communication occurs when developers can talk to appropriate users
 themselves, which means that the developer is also performing the business analyst role. This can
work on very small projects, provided the developer involved has the appropriate BA skills, but it
doesn’t scale up to large projects with thousands of potential users and dozens of developers.

 CHAPTER 6 Finding the voice of the user 109

FIGURE 6-3 Some possible communication pathways between the user and the developer.

As in the children’s game “Telephone,” intervening layers between the user and the developer
 increase the chance of miscommunication and delay transmission. Some of these intervening layers
add value, though, as when a skilled BA works with users or other participants to collect, evaluate,
 refine, and organize their input. Recognize the risks that you assume by using marketing staff,
 product managers, subject matter experts, or others as surrogates for the actual voice of the user.
Despite the obstacles to—and the cost of—optimizing user representation, your product and your
customers will suffer if you don’t talk to the people who can provide the best information.

The product champion

Many years ago I worked in a small software development group that supported the scientific
 research activities at a major corporation. Each of our projects included a few key members of
our user community to provide the requirements. We called these people product champions
(Wiegers 1996). The product champion approach provides an effective way to structure that
all-important customer-development collaborative partnership discussed in Chapter 2.

110 PART II Requirements development

Each product champion serves as the primary interface between members of a single user class
and the project’s business analyst. Ideally, the champions will be actual users, not surrogates such as
funding sponsors, marketing staff, user managers, or software developers imagining themselves to be
users. Product champions gather requirements from other members of the user classes they represent
and reconcile inconsistencies. Requirements development is thus a shared responsibility of the BA and
selected users, although the BA should actually write the requirements documents. It’s hard enough
to write good requirements if you do it for a living; it is not realistic to expect users who have never
written requirements before to do a good job.

The best product champions have a clear vision of the new system. They’re enthusiastic because
they see how it will benefit them and their peers. Champions should be effective communicators
who are respected by their colleagues. They need a thorough understanding of the application
domain and the solution’s operating environment. Great product champions are in demand for other
 assignments, so you’ll have to build a persuasive case for why particular individuals are critical to
project success. For example, product champions can lead adoption of the application by the user
community, which might be a success metric that managers will appreciate. We have found that good
product champions made a huge difference in our projects, so we offer them public reward and
 recognition for their contributions.

Our software development teams enjoyed an additional benefit from the product champion
approach. On several projects, we had excellent champions who spoke out on our behalf with their
colleagues when the customers wondered why the software wasn’t done yet. “Don’t worry about it,”
the champions told their peers and their managers. “I understand and agree with the software team’s
approach to software engineering. The time we’re spending on requirements will help us get the
system we really need and will save time in the long run.” Such collaboration helps break down the
tension that can arise between customers and development teams.

The product champion approach works best if each champion is fully empowered to make binding
decisions on behalf of the user class he represents. If a champion’s decisions are routinely overruled
by others, his time and goodwill are being wasted. However, the champions must remember that they
are not the sole customers. Problems arise when the individual filling this critical liaison role doesn’t
adequately communicate with his peers and presents only his own wishes and ideas.

External product champions
When developing commercial software, it can be difficult to find product champions from outside
your company. Companies that develop commercial products sometimes rely on internal subject
matter experts or outside consultants to serve as surrogates for actual users, who might be unknown
or difficult to engage. If you have a close working relationship with some major corporate customers,
they might welcome the opportunity to participate in requirements elicitation. You might give
 external product champions economic incentives for their participation. Consider offering them
discounts on the product or paying for the time they spend working with you on requirements. You
still face the challenge of how to avoid hearing only the champions’ requirements and overlooking
the needs of other stakeholders. If you have a diverse customer base, first identify core requirements
that are common to all customers. Then define additional requirements that are specific to individual
corporate customers, market segments, or user classes.

 CHAPTER 6 Finding the voice of the user 111

Another alternative is to hire a suitable product champion who has the right background. One
company that developed a retail point-of-sale and back-office system for a particular industry hired
three store managers to serve as full-time product champions. As another example, my longtime
 family doctor, Art, left his medical practice to become the voice-of-the-physician at a medical
 software company. Art’s new employer believed that it was worth the expense to hire a doctor to help
the company build software that other doctors would accept. A third company hired several former
employees from one of their major customers. These people provided valuable domain expertise as
well as insight into the politics of the customer organization. To illustrate an alternative engagement
model, one company had several corporate customers that used their invoicing systems extensively.
Rather than bringing in product champions from the customers, the developing company sent BAs to
the customer sites. Customers willingly dedicated some of their staff time to helping the BAs get the
right requirements for the new invoicing system.

Anytime the product champion is a former or simulated user, watch out for disconnects between
the champion’s perceptions and the current needs of real users. Some domains change rapidly,
whereas others are more stable. Regardless, if people aren’t operating in the role anymore, they
 simply might have forgotten the intricacies of the daily job. The essential question is whether the
product champion, no matter what her background or current job, can accurately represent the
needs of today’s real users.

Product champion expectations
To help the product champions succeed, document what you expect your champions to do. These
written expectations can help you build a case for specific individuals to fill this critical role. Table 6-2
identifies some activities that product champions might perform (Wiegers 1996). Not every champion
will do all of these; use this table as a starting point to negotiate each champion’s responsibilities.

TABLE 6-2 Possible product champion activities

Category Activities

Planning ■■ Refine the scope and limitations of the product.
■■ Identify other systems with which to interact.
■■ Evaluate the impact of the new system on business operations.
■■ Define a transition path from current applications or manual operations.
■■ Identify relevant standards and certification requirements.

Requirements ■■ Collect input on requirements from other users.
■■ Develop usage scenarios, use cases, and user stories.
■■ Resolve conflicts between proposed requirements within the user class.
■■ Define implementation priorities.
■■ Provide input regarding performance and other quality requirements.
■■ Evaluate prototypes.
■■ Work with other decision makers to resolve conflicts among requirements from different

stakeholders.
■■ Provide specialized algorithms.

112 PART II Requirements development

Category Activities

Validation and
 verification

■■ Review requirements specifications.
■■ Define acceptance criteria.
■■ Develop user acceptance tests from usage scenarios.
■■ Provide test data sets from the business.
■■ Perform beta testing or user acceptance testing.

User aids ■■ Write portions of user documentation and help text.
■■ Contribute to training materials or tutorials.
■■ Demonstrate the system to peers.

Change management ■■ Evaluate and prioritize defect corrections and enhancement requests.
■■ Dynamically adjust the scope of future releases or iterations.
■■ Evaluate the impact of proposed changes on users and business processes.
■■ Participate in making change decisions.

Multiple product champions
One person can rarely describe the needs for all users of an application. The Chemical Tracking
System had four major user classes, so it needed four product champions selected from the internal
user community at Contoso Pharmaceuticals. Figure 6-4 illustrates how the project manager set up
a team of BAs and product champions to elicit the right requirements from the right sources. These
champions were not assigned full time, but each one spent several hours per week working on the
project. Three BAs worked with the four product champions to elicit, analyze, and document their
requirements. (One BA worked with two product champions because the Buyer and the Health and
Safety Department user classes were small and had few requirements.) One of the BAs assembled all
the input into a unified SRS.

FIGURE 6-4 Product champion model for the Chemical Tracking System.

We didn’t expect a single person to provide all the diverse requirements for the hundreds of
 chemists at Contoso. Don, the product champion for the Chemist user class, assembled a backup

 CHAPTER 6 Finding the voice of the user 113

team of five chemists from other parts of the company. They represented subclasses within the broad
Chemist user class. This hierarchical approach engaged additional users in requirements development
while avoiding the expense of massive workshops or dozens of individual interviews. Don always
strove for consensus. However, he willingly made the necessary decisions when agreement wasn’t
achieved so the project could move ahead. No backup team was necessary when the user class was
small enough or cohesive enough that one individual truly could represent the group’s needs.1

The voiceless user class
A business analyst at Humongous Insurance was delighted that an influential user, Rebecca,
agreed to serve as product champion for the new claims processing system. Rebecca had many
ideas about the system features and user interface design. Thrilled to have the guidance of an
expert, the development team happily complied with her requests. After delivery, though, they
were shocked to receive many complaints about how hard the system was to use.

Rebecca was a power user. She specified usability requirements that were great for experts,
but the 90 percent of users who weren’t experts found the system unintuitive and difficult to
learn. The BA didn’t recognize that the claims processing system had at least two user classes.
The large group of non–power users was disenfranchised in the requirements and user interface
design processes. Humongous paid the price in an expensive redesign. The BA should have
engaged at least one more product champion to represent the large class of nonexpert users.

Selling the product champion idea
Expect to encounter resistance when you propose the idea of having product champions on your
projects. “The users are too busy.” “Management wants to make the decisions.” “They’ll slow us down.”
“We can’t afford it.” “They’ll run amok and scope will explode.” “I don’t know what I’m supposed to
do as a product champion.” Some users won’t want to cooperate on a project that will make them
change how they work or might even threaten their jobs. Managers are sometimes reluctant to
 delegate authority for requirements to ordinary users.

Separating business requirements from user requirements alleviates some of these discomforts. As
an actual user, the product champion makes decisions at the user requirements level within the scope
boundaries imposed by the business requirements. The management sponsor retains the authority
to make decisions that affect the product vision, project scope, business-related priorities, schedule,
or budget. Documenting and negotiating each product champion’s role and responsibilities give
 candidate champions a comfort level about what they’re being asked to do. Remind management
that a product champion is a key contributor who can help the project achieve its business objectives.

1 There’s an interesting coda to this story. Years after I worked on this project, a man in a class I was teaching said he
had worked at the company that Contoso Pharmaceuticals had contracted to build the Chemical Tracking System. The
developers found that the requirements specification we created using this product champion model provided a solid
foundation for the development work. The system was delivered successfully and was used at Contoso for many years.

114 PART II Requirements development

If you encounter resistance, point out that insufficient user involvement is a leading cause of
 software project failure. Remind the protesters of problems they’ve experienced on previous projects
that trace back to inadequate user input. Every organization has horror stories of new systems that
didn’t satisfy user needs or failed to meet unstated usability or performance expectations. You
can’t afford to rebuild or discard systems that don’t measure up because no one understood the
 requirements. Product champions provide one way to get that all-important customer input in a
timely way, not at the end of the project when customers are disappointed and developers are tired.

Product champion traps to avoid
The product champion model has succeeded in many environments. It works only when the product
champions understand and sign up for their responsibilities, have the authority to make decisions
at the user requirements level, and have time available to do the job. Watch out for the following
 potential problems:

■■ Managers override the decisions that a qualified and duly authorized product champion
makes. Perhaps a manager has a wild new idea at the last minute, or thinks he knows what the
users need. This behavior often results in dissatisfied users and frustrated product champions
who feel that management doesn’t trust them.

■■ A product champion who forgets that he is representing other customers and presents only
his own requirements won’t do a good job. He might be happy with the outcome, but others
likely won’t be.

■■ A product champion who lacks a clear vision of the new system might defer decisions to the
BA. If all of the BA’s ideas are fine with the champion, the champion isn’t providing much help.

■■ A senior user might nominate a less experienced user as champion because she doesn’t have
time to do the job herself. This can lead to backseat driving from the senior user who still
wishes to strongly influence the project’s direction.

Beware of users who purport to speak for a user class to which they do not belong. Rarely, an
individual might actively try to block the BA from working with the ideal contacts for some reason.
On the Chemical Tracking System, the product champion for the chemical stockroom staff—herself
a former chemist—initially insisted on providing what she thought were the needs of the chemist
user class. Unfortunately, her input about current chemist needs wasn’t accurate. It was difficult to
 convince her that this wasn’t her job, but the BA didn’t let her intimidate him. The project manager
lined up a separate product champion for the chemists, who did a great job of collecting, evaluating,
and relaying that community’s requirements.

 CHAPTER 6 Finding the voice of the user 115

User representation on agile projects

Frequent conversations between project team members and appropriate customers are the most
effective way to resolve many requirements issues and to flesh out requirements specifics when they
are needed. Written documentation, however detailed, is an incomplete substitute for these ongoing
communications. A fundamental tenet of Extreme Programming, one of the early agile development
methods, is the presence of a full-time, on-site customer for these discussions (Jeffries, Anderson, and
Hendrickson, 2001).

Some agile development methods include a single representative of stakeholders called a
product owner in the team to serve as the voice of the customer (Schwaber 2004; Cohn 2010;
Leffingwell 2011). The product owner defines the product’s vision and is responsible for developing
and prioritizing the contents of the product backlog. (The backlog is the prioritized list of user
 stories—requirements—for the product and their allocation to upcoming iterations, called sprints
in the agile development method called Scrum.) The product owner therefore spans all three levels
of requirements: business, user, and functional. He essentially straddles the product champion and
 business analyst functions, representing the customer, defining product features, prioritizing them,
and so forth. Ultimately, someone does have to make decisions about exactly what capabilities to
deliver in the product and when. In Scrum, that’s the product owner’s responsibility.

The ideal state of having a single product owner isn’t always practical. We know of one company
that was implementing a package solution to run their insurance business. The organization was
too big and complex to have one person who understood everything in enough detail to make all
 decisions about the implementation. Instead, the customers selected a product owner from each
department to own the priorities for the functionality used by that department. The company’s CIO
served as the lead product owner. The CIO understood the entire product vision, so he could ensure
that the departments were on track to deliver that vision. He had responsibility for decision making
when there were conflicts between department-level product owners.

The premises of the on-site customer and close customer collaboration with developers that
agile methods espouse certainly are sound. In fact, we feel strongly that all development projects
 warrant this emphasis on user involvement. As you have seen, though, all but the smallest projects
have multiple user classes, as well as numerous additional stakeholders whose interests must be
 represented. In many cases it’s not realistic to expect a single individual to be able to adequately
 understand and describe the needs of all relevant user classes, nor to make all the decisions
 associated with product definition. Particularly with internal corporate projects, it will generally work
better to use a representative structure like the product champion model to ensure adequate user
engagement.

116 PART II Requirements development

The product owner and product champion schemes are not mutually exclusive. If the product
owner is functioning in the role of a business analyst, rather than as a stakeholder representative
himself, he could set up a structure with one or more product champions to see that the most
 appropriate sources provide input. Alternatively, the product owner could collaborate with one or
more business analysts, who then work with stakeholders to understand their requirements. The
product owner would then serve as the ultimate decision maker.

“On-sight” customer
I once wrote programs for a research scientist who sat about 10 feet from my desk. John
could provide instantaneous answers to my questions, provide feedback on user interface
designs, and clarify our informally written requirements. One day John moved to a new office,
around the corner on the same floor of the same building, about 100 feet away. I perceived an
 immediate drop in my programming productivity because of the cycle time delay in getting
John’s input. I spent more time fixing problems because sometimes I went down the wrong
path before I could get a course correction. There’s no substitute for having the right customers
continuously available to the developers both on-site and “on-sight.” Beware, though, of
 too-frequent interruptions that make it hard for people to refocus their attention on their work.
It can take up to 15 minutes to reimmerse yourself into the highly productive, focused state of
mind called flow (DeMarco and Lister 1999).

An on-site customer doesn’t guarantee the desired outcome. My colleague Chris, a project
manager, established a development team environment with minimal physical barriers and engaged
two product champions. Chris offered this report: “While the close proximity seems to work for the
development team, the results with product champions have been mixed. One sat in our midst and
still managed to avoid us all. The new champion does a fine job of interacting with the developers
and has truly enabled the rapid development of software.” There is no substitute for having the right
people, in the right role, in the right place, with the right attitude.

Resolving conflicting requirements

Someone must resolve conflicting requirements from different user classes, reconcile inconsistencies,
and arbitrate questions of scope that arise. The product champions or product owner can handle this
in many, but likely not all, cases. Early in the project, determine who the decision makers will be for
requirements issues, as discussed in Chapter 2. If it’s not clear who is responsible for making these
decisions or if the authorized individuals abdicate their responsibilities, the decisions will fall to the
developers or analysts by default. Most of them don’t have the necessary knowledge and perspective

 CHAPTER 6 Finding the voice of the user 117

to make the best business decisions, though. Analysts sometimes defer to the loudest voice they hear
or to the person highest on the food chain. Though understandable, this is not the best strategy.
Decisions should be made as low in the organization’s hierarchy as possible by well-informed people
who are close to the issues.

Table 6-3 identifies some requirements conflicts that can arise on projects and suggests ways
to handle them. The project’s leaders need to determine who will decide what to do when such
 situations arise, who will make the call if agreement is not reached, and to whom significant issues
must be escalated when necessary.

TABLE 6-3 Suggestions for resolving requirements disputes

Disagreement between How to resolve

Individual users Product champion or product owner decides

User classes Favored user class gets preference

Market segments Segment with greatest impact on business success gets preference

Corporate customers Business objectives dictate direction

Users and user managers Product owner or product champion for the user class decides

Development and customers Customers get preference, but in alignment with business objectives

Development and marketing Marketing gets preference

Trap Don’t justify doing whatever any customer demands because “The customer is always
right.” We all know the customer is not always right (Wiegers 2011). Sometimes, a customer
is unreasonable, uninformed, or in a bad mood. The customer always has a point, though,
and the software team must understand and respect that point.

These negotiations don’t always turn out the way the analyst might hope. Certain customers
might reject all attempts to consider reasonable alternatives and other points of view. We’ve seen
cases where marketing never said no to a customer request, no matter how infeasible or expensive.
The team needs to decide who will be making decisions on the project’s requirements before they
confront these types of issues. Otherwise, indecision and the revisiting of previous decisions can stall
the project in endless wrangling. If you’re a BA caught in this dilemma, rely on your organizational
structure and processes to work through the disagreements. But, as we’ve cautioned before, there
aren’t any easy solutions if you’re working with truly unreasonable people.

118 PART II Requirements development

Next steps

■■ Relate Figure 6-3 to the way you hear the voice of the user in your own environment. Do
you encounter any problems with your current communication links? Identify the shortest
and most effective communication paths that you can use to elicit user requirements in
the future.

■■ Identify the different user classes for your project. Which ones are favored? Which, if any,
are disfavored? Who would make a good product champion for each important user class?
Even if the project is already underway, the team likely would benefit from having product
champions involved.

■■ Starting with Table 6-2, define the activities you would like your product champions to
perform. Negotiate the specific contributions with each candidate product champion and
his or her manager.

■■ Determine who the decision makers are for requirements issues on your project. How well
does your current decision-making approach work? Where does it break down? Are the
right people making decisions? If not, who should be doing it? Suggest processes that the
decision makers should use for reaching agreement on requirements issues.

 393

C H A P T E R 2 1

Enhancement and replacement
projects

Most of this book describes requirements development as though you are beginning a new software
or system development project, sometimes called a green-field project. However, many organizations
devote much of their effort to enhancing or replacing existing information systems or building
new releases of established commercial products. Most of the practices described in this book are
 appropriate for enhancement and replacement projects. This chapter provides specific suggestions as
to which practices are most relevant and how to use them.

An enhancement project is one in which new capabilities are added to an existing system.
 Enhancement projects might also involve correcting defects, adding new reports, and modifying
functionality to comply with revised business rules or needs.

A replacement (or reengineering) project replaces an existing application with a new custom-built
system, a commercial off-the-shelf (COTS) system, or a hybrid of those. Replacement projects are
most commonly implemented to improve performance, cut costs (such as maintenance costs or
 license fees), take advantage of modern technologies, or meet regulatory requirements. If your
replacement project will involve a COTS solution, the guidance presented in Chapter 22, “Packaged
solution projects,” will also be helpful.

Replacement and enhancement projects face some particular requirements issues. The original
 developers who held all the critical information in their heads might be long gone. It’s tempting to
claim that a small enhancement doesn’t warrant writing any requirements. Developers might believe
that they don’t need detailed requirements if they are replacing an existing system’s functionality.
The approaches described in this chapter can help you to deal with the challenges of enhancing or
 replacing an existing system to improve its ability to meet the organization’s current business needs.

The case of the missing spec
The requirements specification for the next release of a mature system often says, essentially,
“The new system should do everything the old system does, except add these new features
and fix those bugs.” A business analyst once received just such a specification for version 5 of
a major product. To find out exactly what the current release did, she looked at the SRS for
version 4. Unfortunately, it also said, in essence, “Version 4 should do everything that version 3
does, except add these new features and fix those bugs.” She followed the trail back, but every

394 PART III Requirements for specific project classes

SRS described just the differences that the new version should exhibit compared to the previous
version. Nowhere was there a description of the original system. Consequently, everyone had a
different understanding of the current system’s capabilities. If you’re in this situation, document
the requirements for your project more thoroughly so that all the stakeholders—both present
and future—understand what the system does.

Expected challenges

The presence of an existing system leads to common challenges that both enhancement and
 replacement projects will face, including the following:

■■ The changes made could degrade the performance to which users are accustomed.

■■ Little or no requirements documentation might be available for the existing system.

■■ Users who are familiar with how the system works today might not like the changes they are
about to encounter.

■■ You might unknowingly break or omit functionality that is vital to some stakeholder group.

■■ Stakeholders might take this opportunity to request new functionality that seems like a good
idea but isn’t really needed to meet the business objectives.

Even if there is existing documentation, it might not prove useful. For enhancement projects,
the documentation might not be up to date. If the documentation doesn’t match the existing
 application’s reality, it is of limited use. For replacement systems, you also need to be wary of carrying
forward all of the requirements, because some of the old functionality probably should not be
 migrated.

One of the major issues in replacement projects is validating that the reasons for the replacement
are sound. There need to be justifiable business objectives for the change. When existing systems
are being completely replaced, organizational processes might also have to change, which makes it
harder for people to accept a new system. The change in business processes, change in the software
system, and learning curve of a new system can disrupt current operations.

Requirements techniques when there is an existing system

Table 21-1 describes the most important requirements development techniques to consider when
working on enhancement and replacement projects.

 CHAPTER 21 Enhancement and replacement projects 395

TABLE 21-1 Valuable requirements techniques for enhancement and replacement projects

Technique Why it’s relevant

Create a feature tree to show
changes

■■ Show features being added.
■■ Identify features from the existing system that won’t be in the new system.

Identify user classes ■■ Assess who is affected by the changes.
■■ Identify new user classes whose needs must be met.

Understand business
 processes

■■ Understand how the current system is intertwined with stakeholders’ daily
jobs and the impacts of it changing.

■■ Define new business processes that might need to be created to align with
new features or a replacement system.

Document business rules ■■ Record business rules that are currently embedded in code.
■■ Look for new business rules that need to be honored.
■■ Redesign the system to better handle volatile business rules that were expen-

sive to maintain.

Create use cases or user
stories

■■ Understand what users must be able to do with the system.
■■ Understand how users expect new features to work.
■■ Prioritize functionality for the new system.

Create a context diagram ■■ Identify and document external entities.
■■ Extend existing interfaces to support new features.
■■ Identify current interfaces that might need to be changed.

Create an ecosystem map ■■ Look for other affected systems.
■■ Look for new, modified, and obsolete interfaces between systems.

Create a dialog map ■■ See how new screens fit into the existing user interface.
■■ Show how the workflow screen navigation will change.

Create data models ■■ Verify that the existing data model is sufficient or extend it for new features.
■■ Verify that all of the data entities and attributes are still needed.
■■ Consider what data has to be migrated, converted, corrected, archived, or

 discarded.

Specify quality attributes ■■ Ensure that the new system is designed to fulfill quality expectations.
■■ Improve satisfaction of quality attributes over the existing system.

Create report tables ■■ Convert existing reports that are still needed.
■■ Define new reports that aren’t in the old system.

Build prototypes ■■ Engage users in the redevelopment process.
■■ Prototype major enhancements if there are uncertainties.

Inspect requirements
 specifications

■■ Identify broken links in the traceability chain.
■■ Determine if any previous requirements are obsolete or unnecessary in the

replacement system.

Enhancement projects provide an opportunity to try new requirements methods in a small-scale
and low-risk way. The pressure to get the next release out might make you think that you don’t
have time to experiment with requirements techniques, but enhancement projects let you tackle
the learning curve in bite-sized chunks. When the next big project comes along, you’ll have some
 experience and confidence in better requirements practices.

Suppose that a customer requests that a new feature be added to a mature product. If you haven’t
worked with user stories before, explore the new feature from the user-story perspective, discussing
with the requester the tasks that users will perform with that feature. Practicing on this project
 reduces the risk compared to applying user stories for the first time on a green-field project, when
your skill might mean the difference between success and high-profile failure.

396 PART III Requirements for specific project classes

Prioritizing by using business objectives

Enhancement projects are undertaken to add new capabilities to an existing application. It’s easy
to get caught up in the excitement and start adding unnecessary capabilities. To combat this risk
of gold-plating, trace requirements back to business objectives to ensure that the new features are
needed and to select the highest-impact features to implement first. You also might need to prioritize
enhancement requests against the correction of defects that had been reported against the old
system.

Also be wary of letting unnecessary new functionality slip into replacement projects. The main
focus of replacement projects is to migrate existing functionality. However, customers might imagine
that if you are developing a new system anyway, it is easy to add lots of new capabilities right away.
Many replacement projects have collapsed because of the weight of uncontrolled scope growth.
You’re usually better off building a stable first release and adding more features through subsequent
enhancement projects, provided the first release allows users to do their jobs.

Replacement projects often originate when stakeholders want to add functionality to an existing
system that is too inflexible to support the growth or has technology limitations. However, there needs
to be a clear business objective to justify implementing an expensive new system (Devine 2008). Use
the anticipated cost savings from a new system (such as through reduced maintenance of an old,
clunky system) plus the value of the new desired functionality to justify a system replacement project.

Also look for existing functionality that doesn’t need to be retained in a replacement system. Don’t
replicate the existing system’s shortcomings or miss an opportunity to update a system to suit new
business needs and processes. For example, the BA might ask users, “Do you use <a particular menu
option>?” If you consistently hear “I never do that,” then maybe it isn’t needed in the replacement
system. Look for usage data that shows what screens, functions, or data entities are rarely accessed
in the current system. Even the existing functionality has to map to current and anticipated business
objectives to warrant re-implementing it in the new system.

Trap Don’t let stakeholders get away with saying “I have it today, so I need it in the new
system” as a default method of justifying requirements.

Mind the gap
A gap analysis is a comparison of functionality between an existing system and a desired new system.
A gap analysis can be expressed in different ways, including use cases, user stories, or features. When
enhancing an existing system, perform a gap analysis to make sure you understand why it isn’t
 currently meeting your business objectives.

Gap analysis for a replacement project entails understanding existing functionality and discovering
the desired new functionality (see Figure 21-1). Identify user requirements for the existing system that
stakeholders want to have re-implemented in the new system. Also, elicit new user requirements that
the existing system does not address. Consider any change requests that were never implemented

 CHAPTER 21 Enhancement and replacement projects 397

in the existing system. Prioritize the existing user requirements and the new ones together. Prioritize
closing the gaps using business objectives as described in the previous section or the other
 prioritization techniques presented in Chapter 16, “First things first: Setting requirement priorities.”

FIGURE 21-1 When you are replacing an existing system, some requirements will be implemented unchanged,
some will be modified, some will be discarded, and some new requirements might be added.

Maintaining performance levels
Existing systems set user expectations for performance and throughput. Stakeholders almost
 always have key performance indicators (KPIs) for existing processes that they will want to maintain
in the new system. A key performance indicator model (KPIM) can help you identify and specify
these metrics for their corresponding business processes (Beatty and Chen 2012). The KPIM helps
 stakeholders see that even if the new system will be different, their business outcomes will be at least
as good as before.

Unless you explicitly plan to maintain them, performance levels can be compromised as systems
are enhanced. Stuffing new functionality into an existing system might slow it down. One data
 synchronization tool had a requirement to update a master data set from the day’s transactions.
It needed to run every 24 hours. In the initial release of the tool, the synchronization started at
 midnight and took about one hour to execute. After some enhancements to include additional
 attributes, merging, and synchronicity checks, the synchronization took 20 hours to execute. This was
a problem, because users expected to have fully synchronized data from the night before available
when they started their workday at 8:00 A.M. The maximum time to complete the synchronization
was never explicitly specified, but the stakeholders assumed it could be done overnight in less than
eight hours.

For replacement systems, prioritize the KPIs that are most important to maintain. Look for the
business processes that trace to the most important KPIs and the requirements that enable those
business processes; these are the requirements to implement first. For instance, if you’re replacing a
loan application system in which loan processors can enter 10 loans per day, it might be important
to maintain at least that same throughput in the new system. The functionality that allows loan
 processers to enter loans should be some of the earliest implemented in the new system, so the loan
processors can maintain their productivity.

398 PART III Requirements for specific project classes

When old requirements don’t exist

Most older systems do not have documented—let alone accurate—requirements. In the absence of
reliable documentation, teams might reverse-engineer an understanding of what the system does
from the user interfaces, code, and database. We think of this as “software archaeology.” To maximize
the benefit from reverse engineering, the archaeology expedition should record what it learns in
the form of requirements and design descriptions. Accumulating accurate information about certain
 portions of the current system positions the team to enhance a system with low risk, to replace a
 system without missing critical functionality, and to perform future enhancements efficiently. It halts
the knowledge drain, so future maintainers better understand the changes that were just made.

If updating the requirements is overly burdensome, it will fall by the wayside as busy people rush
on to the next change request. Obsolete requirements aren’t helpful for future enhancements. There’s
a widespread fear in the software industry that writing documentation will consume too much time;
the knee-jerk reaction is to neglect all opportunities to update requirements documentation. But
what’s the cost if you don’t update the requirements and a future maintainer (perhaps you!) has to
regenerate that information? The answer to this question will let you make a thoughtful business
 decision concerning whether to revise the requirements documentation when you change or
 re-create the software.

When the team performs additional enhancements and maintenance over time, it can extend
these fractional knowledge representations, steadily improving the system documentation. The
 incremental cost of recording this newly found knowledge is small compared with the cost of
 someone having to rediscover it later on. Implementing enhancements almost always necessitates
further requirements development, so add those new requirements to an existing requirements
repository, if there is one. If you’re replacing an old system, you have an opportunity to document
the requirements for the new one and to keep the requirements up to date with what you learn
 throughout the project. Try to leave the requirements in better shape than you found them.

Which requirements should you specify?
It’s not always worth taking the time to generate a complete set of requirements for an entire
 production system. Many options lie between the two extremes of continuing forever with no
 requirements documentation and reconstructing a perfect requirements set. Knowing why you’d like
to have written requirements available lets you judge whether the cost of rebuilding all—or even
part—of the specification is a sound investment.

Perhaps your current system is a shapeless mass of history and mystery like the one in Figure 21-2.
Imagine that you’ve been asked to implement some new functionality in region A in this figure.
Begin by recording the new requirements in a structured SRS or in a requirements management tool.
When you add the new functionality, you’ll have to figure out how it interfaces to or fits in with the
 existing system. The bridges in Figure 21-2 between region A and your current system represent these
 interfaces. This analysis provides insight into the white portion of the current system, region B. In
 addition to the requirements for region A, this insight is the new knowledge you need to capture.

 CHAPTER 21 Enhancement and replacement projects 399

FIGURE 21-2 Adding enhancement A to an ill-documented existing system provides some visibility into the
B area.

Rarely do you need to document the entire existing system. Focus detailed requirements efforts
on the changes needed to meet the business objectives. If you’re replacing a system, start by
 documenting the areas prioritized as most important to achieve the business objectives or those that
pose the highest implementation risk. Any new requirements identified during the gap analysis will
need to be specified at the same level of precision and using the same techniques as you would for a
new system.

Level of detail
One of the biggest challenges is determining the appropriate level of detail at which to document
requirements gleaned from the existing system. For enhancements, defining requirements for the
new functionality alone might be sufficient. However, you will usually benefit from documenting all of
the functionality that closely relates to the enhancement, to ensure that the change fits in seamlessly
(region B in Figure 21-2). You might want to create business processes, user requirements, and/or
functional requirements for those related areas. For example, let’s say you are adding a discount code
feature to an existing shopping cart function, but you don’t have any documented requirements for
the shopping cart. You might be tempted to write just a single user story: “As a customer, I need to be
able to enter a discount code so I can get the cheapest price for the product.” However, this user story
alone lacks context, so consider capturing other user stories about shopping cart operations. That
information could be valuable the next time you need to modify the shopping cart function.

I worked with one team that was just beginning to develop the requirements for version 2 of
a major product with embedded software. They hadn’t done a good job on the requirements for
 version 1, which was currently being implemented. The lead BA wondered, “Is it worth going back
to improve the SRS for version 1?” The company anticipated that this product line would be a major
revenue generator for at least 10 years. They also planned to reuse some of the core requirements
in several spin-off products. In this case, it made sense to improve the requirements documentation
for version 1 because it was the foundation for all subsequent development work in this product line.
Had they been working on version 5.3 of a well-worn system that they expected to retire within a
year, reconstructing a comprehensive set of requirements wouldn’t have been a wise investment.

400 PART III Requirements for specific project classes

Trace Data
Requirements trace data for existing systems will help the enhancement developer determine
which components she might have to modify because of a change in a specific requirement. In an
ideal world, when you’re replacing a system, the existing system would have a full set of functional
 requirements such that you could establish traceability between the old and new systems to
avoid overlooking any requirements. However, a poorly documented old system won’t have trace
 information available, and establishing rigorous traceability for both existing and new systems is time
consuming.

As with any new development, it’s a good practice to create a traceability matrix to link the new
or changed requirements to the corresponding design elements, code, and test cases. Accumulating
trace links as you perform the development work takes little effort, whereas it’s a great deal of work
to regenerate the links from a completed system. For replacement systems, perform requirements
tracing at a high level: make a list of features and user stories for the existing system and prioritize
to determine which of those will be implemented in the new system. See Chapter 29, “Links in the
 requirements chain,” for more information on tracing requirements.

How to discover the requirements of an existing system
In enhancement and replacement projects, even if you don’t have existing documentation, you do
have a system to work from to discover the relevant requirements. During enhancement projects,
consider drawing a dialog map for the new screens you have to add, showing the navigation
 connections to and from existing display elements. You might write use cases or user stories that span
the new and existing functionality.

In replacement system projects, you need to understand all of the desired functionality, just as
you do on any new development project. Study the user interface of the existing system to identify
 candidate functionality for the new system. Examine existing system interfaces to determine what
data is exchanged between systems today. Understand how users use the current system. If no one
understands the functionality and business rules behind the user interface, someone will need to look
at the code or database to understand what’s going on. Analyze any documentation that does
exist—design documents, help screens, user manuals, training materials—to identify requirements.

You might not need to specify functional requirements for the existing system at all, instead
 creating models to fill the information void. Swimlane diagrams can describe how users do their jobs
with the system today. Context diagrams, data flow diagrams, and entity-relationship diagrams are
also useful. You might create user requirements, specifying them only at a high level without filling
in all of the details. Another way to begin closing the information gap is to create data dictionary
entries when you add new data elements to the system and modify existing definitions. The test suite
might be useful as an initial source of information to recover the software requirements, because tests
 represent an alternative view of requirements.

 CHAPTER 21 Enhancement and replacement projects 401

Sometimes “good enough” is enough
A third-party assessment of current business analysis practices in one organization revealed
that their teams did a fairly good job of writing requirements for new projects, but they failed
to update the requirements as the products evolved through a series of enhancement releases.
The BAs did create requirements for each enhancement project. However, they did not merge
all of those revisions back into the requirements baseline. The organization’s manager couldn’t
think of a measurable benefit from keeping the existing documentation 100 percent updated
to reflect the implemented systems. He assumed that his requirements always reflected only
80 to 90 percent of the working software anyway, so there was little value in trying to perfect
the requirements for an enhancement. This meant that future enhancement project teams
would have to work with some uncertainty and close the gaps when needed, but that price was
deemed acceptable.

Encouraging new system adoption

You’re bound to run into resistance when changing or replacing an existing system. People are
 naturally reluctant to change. Introducing a new feature that will make users’ jobs easier is a good
thing. But users are accustomed to how the system works today, and you plan to modify that, which
is not so good from the user’s point of view. The issue is even bigger when you’re replacing a system,
because now you’re changing more than just a bit of functionality. You’re potentially changing the
entire application’s look and feel, its menus, the operating environment, and possibly the user’s
whole job. If you're a business analyst, project manager, or project sponsor, you have to anticipate the
 resistance and plan how you will overcome it, so the users will accept the new features or system.

An existing, established system is probably stable, fully integrated with surrounding systems, and
well understood by users. A new system with all the same functionality might be none of these upon
its initial release. Users might fear that the new system will disrupt their normal operations while
they learn how to use it. Even worse, it might not support their current operations. Users might even
be afraid of losing their jobs if the system automates tasks they perform manually today. It’s not
 uncommon to hear users say that they will accept the new system only if it does everything the old
system does—even if they don’t personally use all of that functionality at present.

To mitigate the risk of user resistance, you first need to understand the business objectives and
the user requirements. If either of these misses the mark, you will lose the users’ trust quickly. During
 elicitation, focus on the benefits the new system or each feature will provide to the users. Help them
 understand the value of the proposed change to the organization as a whole. Keep in mind—even
with enhancements—that just because something is new doesn’t mean it will make the user’s job
easier. A poorly designed user interface can even make the system harder to use because the old
features are harder to find, lost amidst a clutter of new options, or more cumbersome to access.

402 PART III Requirements for specific project classes

Our organization recently upgraded our document-repository tool to a new version to give
us access to additional features and a more stable operating environment. During beta testing, I
 discovered that simple, common tasks such as checking out and downloading a file are now harder. In
the previous version, you could check out a file in two clicks, but now it takes three or four, depending
on the navigation path you choose. If our executive stakeholders thought these user interface
changes were a big risk to user acceptance, they could invest in developing custom functionality to
mimic the old system. Showing prototypes to users can help them get used to the new system or new
features and reveal likely adoption issues early in the project.

One caveat with system replacements is that the key performance indicators for certain groups
might be negatively affected, even if the system replacement provides a benefit for the organization
as a whole. Let users know as soon as possible about features they might be losing or quality
 attributes that might degrade, so they can start to prepare for it. System adoption can involve as
much emotion as logic, so expectation management is critical to lay the foundation for a successful
rollout.

When you are migrating from an existing system, transition requirements are also important.
Transition requirements describe the capabilities that the whole solution—not just the software
 application—must have to enable moving from the existing system to the new system (IIBA 2009).
They can encompass data conversions, user training, organizational and business process changes,
and the need to run both old and new systems in parallel for a period of time. Think about everything
that will be required for stakeholders to comfortably and efficiently transition to the new way
of working. Understanding transition requirements is part of assessing readiness and managing
 organizational change (IIBA 2009).

Can we iterate?

Enhancement projects are incremental by definition. Project teams can often adopt agile methods
readily, by prioritizing enhancements using a product backlog as described in Chapter 20, “Agile
 projects.” However, replacement projects do not always lend themselves to incremental delivery
because you need a critical mass of functionality in the new application before users can begin
 using it to do their jobs. It’s not practical for them to use the new system to do a small portion of
their job and then have to go back to the old system to perform other functions. However, big-bang
 migrations are also challenging and unrealistic. It’s difficult to replace in a single step an established
system that has matured over many years and numerous releases.

One approach to implementing a replacement system incrementally is to identify functionality
that can be isolated and begin by building just those pieces. We once helped a customer team to
replace their current fulfillment system with a new custom-developed system. Inventory manage-
ment represented about 10 percent of the total functionality of the entire fulfillment system. For the
most part, the people who managed inventory were separate from the people who managed other
parts of the fulfillment process. The initial strategy was to move just the inventory management

 CHAPTER 21 Enhancement and replacement projects 403

 functionality to a new system of its own. This was ideal functionality to isolate for the first release
because it affected just a subset of users, who then would primarily work only in the new system. The
one downside side to the approach is that a new software interface had to be developed so that the
new inventory system could pass data to and from the existing fulfillment system.

We had no requirements documentation for the existing system. But retaining the original system
and turning off its inventory management piece provided a clear boundary for the requirements
 effort. We primarily wrote use cases and functional requirements for the new inventory system,
based on the most important functions of the existing system. We created an entity-relationship
diagram and a data dictionary. We drew a context diagram for the entire existing fulfillment system
to understand integration points that might be relevant when we split inventory out of it. Then we
 created a new context diagram to show how inventory management would exist as an external
 system that interacts with the truncated fulfillment system.

Not all enhancement or replacement projects will be this clean. Most of them will struggle
to overcome the two biggest challenges: a lack of documentation for the existing system, and a
 potential battle to get users to adopt the new system or features. However, using the techniques
described in this chapter can help you actively mitigate these risks.

	Cover������������
	Copyright����������������
	Contents���������������
	CHAPTER 6: Finding the voice of the user���
	User classes�������������������
	Classifying users������������������������
	Identifying your user classes������������������������������������

	User personas��������������������
	Connecting with user representatives���
	The product champion���������������������������
	External product champions���������������������������������
	Product champion expectations������������������������������������
	Multiple product champions���������������������������������
	Selling the product champion idea��
	Product champion traps to avoid��������������������������������������

	User representation on agile projects��
	Resolving conflicting requirements���

	CHAPTER 21: Enhancement and replacement projects���
	Expected challenges��������������������������
	Requirements techniques when there is an existing system���
	Prioritizing by using business objectives��
	Mind the gap�������������������
	Maintaining performance levels�������������������������������������

	When old requirements don’t exist��
	Which requirements should you specify?���
	How to discover the requirements of an existing system���

	Encouraging new system adoption��������������������������������������
	Can we iterate?����������������������

